20.1 Origins of Plant Life
Plant life began in the water and became adapted to land.

20.2 Classification of Plants
Plants can be classified into nine phyla.

20.3 Diversity of Flowering Plants
The largest phylum in the plant kingdom is the flowering plants.

20.4 Plants in Human Culture
Humans rely on plants in many ways.
How have flowering plants come to dominate Earth’s landscapes?

From the mosses that live in Antarctica to these flowering protea plants of South Africa, the plant kingdom is diverse. Proteas are native to one region of South Africa, called the Cape floristic region, which can go through long periods of drought. This small region is home to over 9,000 plant species, including at least 6,000 that are found nowhere else on Earth.
20.1 Origins of Plant Life

KEY CONCEPT Plant life began in the water and became adapted to land.

MAIN IDEAS
• Land plants evolved from green algae.
• Plants have adaptations that allow them to live on land.
• Plants evolve with other organisms in their environment.

VOCABULARY
- plant, p. 612
- cuticle, p. 614
- stomata, p. 614
- vascular system, p. 614
- lignin, p. 614
- pollen grain, p. 614
- seed, p. 614

Review
algae, eukaryote, photosynthesis, chlorophyll, herbivore

Connect The flowering proteas shown on the previous page are not just plants with beautiful flowers. Various birds, rodents, and insects rely on protea nectar and pollen as food sources. Green protea beetles even live inside of protea flowers. Without plants, animal life as we know it would not exist on land.

MAIN IDEA
Land plants evolved from green algae.

All green algae share certain characteristics with plants. Plants are multicellular eukaryotes, most of which produce their own food through photosynthesis and have adapted to life on land. Like plants, green algae are photosynthetic eukaryotes. They have chlorophyll that captures energy from sunlight during photosynthesis. Chlorophyll is what makes these algae—and most of the plants that we are familiar with—green. Green algae and plants have the same types of chlorophyll. Another feature both green algae and plants share is that they use starch as a storage product. Most green algae also have cell walls that contain cellulose, a complex carbohydrate that is found in the cell walls of all plants.

Evidence from genetic analysis points to one ancient species of green algae that is the common ancestor of all plants. If it were alive today, this species would be classified as a member of the class Charophyceae, like the algae in FIGURE 20.1. Several other important plant characteristics likely originated in charophyceans.

- A multicellular body, which led to the specialization of cells and tissues
- A method of cell division that produces cells with small channels in their walls, which allows cells to communicate with each other chemically
- Reproduction that involves sperm traveling to and fertilizing an egg cell

Today, charophyceans are common in freshwater habitats. Scientists hypothesize that the ancestral charophycean species may have grown in areas of shallow water that dried out from time to time. Natural selection likely favored individuals that could withstand longer dry periods. Eventually, the first true plant species evolved, as shown in FIGURE 20.2. True plants have multicellular embryos that remain attached to the female parent as they develop.
Plants have evolved from green algae. An extinct charophycean species is the common ancestor of all plants.

The earliest plant fossils date to more than 450 million years ago. The first true plants probably grew on the edges of lakes and streams. Like modern-day mosses, they relied on droplets of water that brought sperm to eggs to produce the next generation of plants. They also had a fairly simple structure similar to that of moss, keeping low to the ground to retain moisture. Over time, the descendants of these plants were able to live in even drier areas.

Analyze What category of plants evolved most recently?

Apply What evidence suggests that green algae are close relatives of land plants?

MAIN IDEA

Plants have adaptations that allow them to live on land.

Life on land presents different challenges than does life in the water. Unlike land plants, algae are constantly surrounded by water, which is needed for photosynthesis. The buoyancy of water supports the weight of most algae. For algae, water provides a medium through which sperm and spores can travel, allowing for reproduction and dispersal. Finally, water prevents sperm, eggs, and developing offspring from drying out.

The challenges of living on drier land have acted as selective pressures for plant life on Earth. In turn, many land plants have evolved adaptations that allow them to retain moisture, transport water and other resources between plant parts, grow upright, and reproduce without free-standing water.

TAKING NOTES

Use a main idea web to take notes about the challenges of life on land and plants’ adaptations to these challenges.

- Challenge: adaptation
- Challenge: adaptation

Early plants faced challenges living on land.

- Challenge: adaptation
- Challenge: adaptation
Retaining Moisture
Plants will die if they dry out from exposure to air and sunlight. The surfaces of plants are covered with a cuticle. A cuticle is a waxy, waterproof layer that helps hold in moisture. As FIGURE 20.3 shows, there are tiny holes in the cuticle, called stomata (singular, stoma). Special cells allow stomata to close to prevent water loss, or to open to allow air to move in and out. Without stomata, the movement of air would be prevented by the cuticle.

Transporting Resources
Taller plants often have more access to sunlight than do shorter plants, but growing tall presents another challenge. While plants must get sunlight and carbon dioxide from the air, they must also get water and nutrients from the soil. A structure for moving these resources to different parts of the plant evolved in the form of a vascular system. A vascular system is a collection of specialized tissues that bring water and mineral nutrients up from the roots and disperse sugars down from the leaves. A vascular system allows a plant to grow higher off the ground.

Growing Upright
Plant height is also limited by the ability of a plant to support its own weight. Plants need structure to support their weight and provide space for vascular tissues. This support comes from a material called lignin (LIHG-nihn), which hardens the cell walls of some vascular tissues. Lignin is also responsible for the strength of wood and provides stiffness to the stems of other plants. As a result, plants can retain their upright structure as they grow toward the sun.

Reproducing on Land
In all plants, eggs are fertilized within the tissue of the parent plant. There, the fertilized egg develops into an embryo, the earliest stage of growth and development for a plant. Some plants reproduce with the help of rainwater or dew, while others do not need free-standing water to reproduce. Pollen and seeds are adaptations that allow seed plants to reproduce completely free of water. A pollen grain is a two-celled structure that contains a cell that will divide to form sperm. Pollen can be carried by wind or animals to female reproductive structures. A seed is a storage device for a plant embryo. A seed has a hard coat that protects the embryo from drying wind and sunlight. Once a seed encounters the right conditions, the embryo can develop into an adult plant.

Analyze Discuss why the four challenges on this page do not apply to most algae.
LIGNIN

Tough lignin is found in the cell walls of plant tissues that provide support and conduct fluids.

STOMATA AND CUTICLES

Stomata are small openings in the cuticle that allow for gas exchange between the plant and the atmosphere.

A cuticle is a waxy coating that protects plant leaves from drying out.

POLLEN AND SEEDS

Pollen can be carried by wind or animals. Each pollen grain contains cells that will divide to form sperm.

Seeds protect and provide nutrients for developing embryos.

VASCULAR SYSTEM

Vascular tissues form "pipelines" that carry resources up and down to different parts of the plant. A vascular system allows plants to grow higher off the ground.

CRITICAL VIEWING

Why is lignin especially important in the cell walls of vascular tissues?
MAIN IDEA

Plants evolve with other organisms in their environment.

Plants have coevolved with other terrestrial organisms for millions of years. Some of these relationships are cooperative, while others have evolved between plant species and the animal species that eat them.

Mutualisms
A mutualism is an interaction between two species in which both species benefit. Some mutualisms exist between plant roots and certain types of fungi and bacteria. Roots provide a habitat for these fungi and bacteria, while the fungi and bacteria help the plant get mineral nutrients from the soil.

Many flowering plants depend on specific animal species for pollination or seed dispersal. In turn, these animals are fed by the plant’s pollen, nectar, or fruit. For example, in Madagascar, Darwin noticed a variety of orchids with long, tubular flower parts. He predicted that a nocturnal moth with a tongue 10 to 12 inches long must be the pollinator. That very moth, shown in FIGURE 20.4, was discovered 40 years after Darwin’s prediction.

Plant-Herbivore Interactions
Plants have a variety of adaptations that discourage animals from eating them. The spines on a cactus and the thorns on a rose stem are examples. Other plants produce defensive chemicals that act as pesticides against plant-eating predators. Natural selection favors herbivores that can overcome the effects of defensive plant adaptations. In turn, natural selection favors plants that produce even sharper spines or thorns or even more toxic chemicals.

Some insects use defensive chemicals produced by plants to their advantage. The larvae of monarch butterflies, for example, feed exclusively on milkweed species. Milkweed plants produce a chemical that makes monarch larvae, adults, and even eggs taste bad to potential predators. In this way, the butterfly has a type of chemical protection as a result of eating milkweed leaves during its development.

Synthesize Describe how defensive chemicals in plant leaves may have evolved.

FIGURE 20.4 The hawk moth has a tongue that measures between 30 and 35 cm (12–14 in.). It is the pollinator of a night-blooming orchid whose nectar is produced 30 cm down inside the flower.

20.1 ASSESSMENT

REVIEWING MAIN IDEAS
1. What characteristics do land plants share with green algae?
2. What adaptations allow plants to thrive on dry land?
3. Describe two ways in which plants evolve with other organisms.

CRITICAL THINKING
4. Synthesize Describe how a cuticle could have evolved through natural selection.
5. Evaluate For plants, what are the advantages and disadvantages of growing tall?
6. Classification Some scientists think that certain species of green algae should be in the kingdom Plantae. What reasons might these scientists use to defend their position?
Connect Scientists have described about 300,000 plant species, and many more probably remain to be found. All plants belong to the kingdom Plantae. While modern plants can be classified into nine phyla, DNA analysis continues to reveal new relationships that keep taxonomists updating the plant family tree.

MAIN IDEA

Mosses and their relatives are seedless nonvascular plants.

In a damp forest, mosses lend an emerald green color to the landscape. These plants do not produce seeds. They have no vascular systems. Instead, they grow close to the ground or on surfaces such as tree trunks, where they can absorb water and nutrients directly. They also rely on free-standing water to allow their sperm to swim to and fertilize eggs. Mosses belong to Bryophyta, one of the three phyla of nonvascular plants. The other phyla in this category are Hepatophyta, the liverworts, and Anthocerophyta, the hornworts.

Liverworts

Most liverworts live in damp environments and get moisture directly from the surface of the soil. They are often found growing on wet rocks, in greenhouse flowerpots, and in other areas with plenty of moisture. Liverworts can have one of two basic forms: thallose or leafy. The name *liverwort* refers to thallose liverworts, which look like the lobes of a liver flat on the ground. Eggs are produced on umbrella-like structures of the thallose liverwort, shown in **Figure 20.5**. Though thallose liverworts may be easier to recognize, leafy liverworts are much more common. Leafy liverworts have stemlike and leaflike structures. These leaflike structures are most often arranged in three rows.
Hornworts
Hornworts are a widespread group of plants that are found in tropical forests and along streams around the world. Hornworts grow low to the ground, and the main plant body has a flat, lobed appearance similar to that of thallose liverworts. Little green horns rising above the flat plant body, as shown in FIGURE 20.6, produce spores.

Mosses
Mosses are the most common nonvascular plants. Some look like clumps of grass, others look like tiny trees, and still others look like strands of green yarn. Mosses do not have true leaves. Instead, they have leaflike structures that are just one cell thick. While they lack vascular systems, some moss species do have cuticles, and most of them have stomata. Mosses can anchor themselves to surfaces such as soil, rocks, or tree trunks, as shown in FIGURE 20.7, with structures called rhizoids (RY-zoydz).

Mosses are often tolerant of harsh weather conditions and nutrient-poor soils. They can grow in many places where other plants are unable to grow. Some mosses can survive in deserts and tundras by entering a stage of dormancy until water is available. In fact, mosses are often among the first plants to colonize bare land and begin the soil-making process in the early stages of primary succession.

One moss that is commonly used by humans is sphagnum (SFAG-nuhm), which grows in acidic bogs. Sphagnum does not decay when it dies, so thick deposits of this dead moss, called peat, build up over time. Peat can be cut from the ground and burned as fuel. Dried peat can absorb water, and it has antibacterial properties. In fact, dried peat has been used in products such as diapers and bandages. Peat also has an important role in the carbon cycle, as a reservoir that holds carbon in an organic form.

Apply Why can’t nonvascular plants grow tall?
MAIN IDEA

Club mosses and ferns are seedless vascular plants.

About 300 million years ago, during the Carboniferous period, shallow swamps were home to enormous seedless vascular plants. Over time, the dead remains of these plants were pressed and heated underground, where they gradually turned into coal. This is why we call coal a fossil fuel.

Club mosses (phylum Lycophyta) and ferns (phylum Pterophyta) are modern seedless vascular plants. Like nonvascular plants, they depend on water for reproduction. However, a vascular system allows these plants to grow higher above the ground and still get materials they need from the soil.

Club Mosses

Club mosses, which are not true mosses, belong to the oldest living group of vascular plants. Some ancient species looked like modern trees, growing more than ten stories tall. These giant plants were wiped out when the Carboniferous climate cooled, but some of the smaller species survived. One common living genus of club moss is *Lycopodium*. Some *Lycopodium* species, such as the one shown in FIGURE 20.8, look like tiny pine trees and are sometimes called “ground pines.”

Whisk Ferns, Horsetails, and Ferns

Ferns and their relatives, whisk ferns and horsetails, can be grouped together in one phylum. Whisk ferns grow mostly in the tropics and subtropics. Although they lack true roots and leaves, DNA analysis indicates that whisk ferns are closely related to ferns.

Horsetails grow in wetland areas and along rivers and streams. They have tan, scalelike leaves that grow in whorls around a tubular stem. Like club mosses, horsetails were much larger and more common in the Carboniferous period. Because horsetails’ cell walls contain a rough compound called silica, colonial settlers used the plant, also called “scouring rush,” to scrub pots.

Ferns are the most successful survivors of the Carboniferous period, with about 12,000 species alive today. Most ferns grow from underground stems called rhizomes (RY-zohmz). Their large leaves, shown in FIGURE 20.9, are called fronds. Newly forming fronds, called fiddleheads, uncurl as they grow. Some ferns are grown as houseplants. Others, called tree ferns, live in the tropics and can grow over three stories tall.

Infer Why do most seedless vascular plants live in moist areas?
Classifying Plants as Vascular or Nonvascular

In this lab, you will examine tissues from several plants to determine whether they are vascular or nonvascular. This is the first step in classifying plants into one of the nine phyla.

Problem
Are the plants vascular or nonvascular?

Procedure
1. Observe each slide under the microscope.
2. Make a sketch of each plant tissue you examine.

Analyze and Conclude
1. Analyze In what ways are the plant tissues similar? In what ways are they different?
2. Analyze Based on your observations, are the plants vascular or nonvascular? What evidence did you use to determine their identity?
3. Apply How does the absence of vascular tissue affect the size (height) of nonvascular plants?

Materials
- prepared slides of plant tissue
- microscope

Main Idea
Seed plants include cone-bearing plants and flowering plants.

You may be familiar with seeds as the small plant parts that, when sown and tended, will produce another plant. From an evolutionary viewpoint, seed plants have several great advantages over their ancestors.

- **Seed plants can reproduce without free-standing water.** Seedless plants depend on water through which sperm swim to fertilize an egg. However, seed plants do not depend on water in this way. Seed plants, such as the pine tree in **Figure 20.10**, produce pollen. Pollen can be carried by the wind or on the body of an animal pollinator, such as a bee. **Pollination** occurs when pollen meets female reproductive parts of the same plant species. Each pollen grain has a cell that will then divide to form sperm. Fertilization occurs when a sperm meets an egg. The ability to reproduce without free-standing water allows many seed plants to live in drier climates.

- **Seeds nourish and protect plant embryos.** A seed consists of a protective coat that contains a plant embryo and a food supply. A seed can survive for many months, or even years, in a dormant state. During this time, the seed can withstand harsh conditions, such as drought or cold, that might kill an adult plant. When conditions are right, the embryo will begin growing, using the food supply provided by the seed.

- **Seeds allow plants to disperse to new places.** Wind, water, or animals often carry seeds far from the individual plant that produced them. In fact, many seed plants have adaptations that aid in the dispersal of seeds, such as the “wings” that carry maple seeds in the wind. Because seeds can remain dormant, the embryo will not begin to develop until it reaches a suitable environment.
Scientists hypothesize that seed plants evolved as the Earth’s climate changed from warm and moist to hot and dry during the Devonian period, 410 to 360 million years ago. Fossil evidence suggests that seed plants evolved about 360 million years ago. Seed plants can be grouped according to whether their seeds are enclosed in fruit.

- A **gymnosperm** (JIHM-nuh-SPURM) is a seed plant whose seeds are not enclosed in fruit.
- An **angiosperm** (AN-jee-uh-SPURM) is a seed plant that has seeds enclosed in some type of fruit.

Most gymnosperms are cone-bearing and evergreen, such as pine trees. A woody **cone** is the reproductive structure of most gymnosperms. It contains hard protective scales. Pollen is produced in male cones, while eggs are produced in female cones. Seeds also develop on the scales of female cones, which protect fertilized eggs. There are three living phyla of gymnosperms: cycads (phylum Cycadophyta), *Ginkgo biloba* (phylum Ginkgophyta), and conifers (phylum Coniferophyta).

Cycads

Cycads look like palm trees with large cones, as shown in **FIGURE 20.11.** Huge forests of cycads grew during the Mesozoic era, 248 million to 65 million years ago. These plants provided food for dinosaurs. In fact, the Jurassic period of this era is commonly called the Age of the Cycads. Today, cycads grow in tropical areas in the Americas, Asia, Africa, and Australia. Many cycad species are endangered because of their slow growth and loss of habitat in these tropical areas.

Ginkgo

Like cycads, ginkgoes were abundant while the dinosaurs lived. Only one species lives today, *Ginkgo biloba*, shown in **FIGURE 20.12.** This species is native to China, and it has survived in part due to its cultivation by Buddhist monks since the year 1100. Because it so closely resembles its fossil ancestors, Darwin called this species a living fossil. In fact, the ginkgo may be the oldest living species of seed plants. Today, it is grown around the world in gardens and used in urban landscaping.

VOCABULARY

Gymnosperm comes from the Greek words *gumnos*, which means “naked,” and *sperma*, which means “seed.”

Angiosperm comes from the Greek words *angos*, which means “vessel,” and *sperma*, which means “seed.”
Conifers
By far the most diverse and common gymnosperms alive today are the conifers—familiar trees with needlelike leaves, such as those in FIGURE 20.13. Pines, redwood, spruce, cedar, fir, and juniper all belong to this phylum. Conifers supply most of the timber used for paper, cardboard, housing lumber, and plywood. They grow quickly, and large tree farms help produce enough wood to meet demand.

Many conifers are evergreen, or green all year-round. However, a few lose their needles in the winter. Conifers are well adapted to high altitudes, sloping hillsides, and poor soil. These characteristics allow conifers to thrive in mountainous regions.

Conifers tend to grow old and grow tall. Two conifers living in California hold world records. At more than 4700 years of age, one bristlecone pine in California’s White Mountains is the oldest known living tree. And a giant sequoia tree in Sequoia National Park is the world’s most massive living thing. It has a mass of 1.2 million kilograms, which is about the mass of 40 buses.

Flowering Plants
Angiosperms belong to a phylum of their own (phylum Anthophyta) and are commonly called flowering plants. A flower is the reproductive structure of flowering plants. Flowers protect a plant’s gametes and fertilized eggs, as woody cones do for most gymnosperms. A fruit is the mature ovary of a flower. Fruit can take the form of a juicy peach, the wings attached to a maple seed, or the fluff surrounding dandelion seeds. As you will learn in the next section, flowers and fruits have played a large role in the dominance and diversity of flowering plants today.

Apply What adaptation of seed plants allows sperm to reach and fertilize an egg in the absence of water?

20.2 ASSESSMENT

REVIEWING MAIN IDEAS
1. What are the habitat requirements for seedless nonvascular plants?
2. What are the evolutionary advantages of a vascular system?
3. What are the evolutionary advantages of seeds?

CRITICAL THINKING
4. Infer In what type of environment might you find nonvascular plants, seedless vascular plants, and seed plants growing together? Explain.
5. Apply Consider the characteristics of pollen grains. Why do people with pollen allergies find it difficult to avoid exposure to pollen?
6. History of Life According to the fossil record, seed plants date back to 360 million years ago, when the Earth’s climate was becoming hotter and drier. What role did this global climate change likely play in the evolution of seed plants?
Habitat Clues

By examining different parts of a plant, you can often tell a lot about its habitat. In this lab, you will examine external features to help you determine the natural habitat of several different plants. You will also examine the epidermal tissue—the “skin” of the plant—which you will learn more about in Chapter 21. This tissue is in direct contact with the air. It has adaptive traits that allow the plant to survive and reproduce in a specific type of environment.

PROBLEM What kinds of adaptations allow plants to live in different habitats?

PROCEDURE

1. Record descriptions for each plant in a data table. Include leaf blade size, shape, thickness, and appearance (dull, shiny, and so on).
2. Using a hand lens, closely examine each plant sample. Look for differences as well as similarities between the plant samples. Record these observations in your data table.
3. Gently bend a leaf from each plant to determine how flexible the leaf is. If the leaf bends quite easily without snapping, then it is flexible. If the leaf is stiff, it may be difficult to bend, or it may snap while you are trying to bend it. Record this information in your table.
4. Carefully prepare a wet mount slide of epidermal tissue from each plant. For some plants, you may be able to tear the leaf at an angle, and then “peel” the leaf apart gently by hand. For others, it will be easier to cut the leaf at an angle with a razor tool. Be very cautious using razors, always cut away from yourself. Forceps may also be helpful for peeling off layers of tissue.
5. Examine the epidermal tissue under a microscope. Pay close attention to differences between the plant samples. Record your observations for each slide.

ANALYZE AND CONCLUDE

1. **Analyze** What visible characteristics do these plants share? What characteristics are unique for each plant?
2. **Analyze** How is the epidermal tissue from each plant different?
3. **Infer** Based on your observations, what conclusions can you make about the natural habitat of each plant?
4. **Infer** How are stiff leaves and flexible leaves adapted for different habitats?
5. **Apply** Describe a characteristic of a plant that lives in the same area that you do. How might this characteristic help the plant to survive in its habitat?

EXTEND YOUR INVESTIGATION

Research the adaptations of plants that live in one of the following types of environments: aquatic, acidic, or salty.
Evolution Recall from Chapter 11 that mammals also went through a period of adaptive radiation after the mass extinction that killed the dinosaurs 65 million years ago.

Connecting CONCEPTS
Evolution Recall from Chapter 11 that mammals also went through a period of adaptive radiation after the mass extinction that killed the dinosaurs 65 million years ago.

MAIN IDEA
Flowering plants have unique adaptations that allow them to dominate in today’s world.

Up until about 65 million years ago, there were far fewer flowering plants than there are today. After the mass extinction event that ended the Cretaceous period, the fossil record reveals that a major shift took place in species that dominated the Earth. Dinosaurs disappeared, as did many seedless plant species. These plant extinctions left open niches into which flowering plants, such as the dogwoods in FIGURE 20.14, could radiate and prosper. Their diversification happened quickly in geologic terms and was closely tied to the diversification of land animals such as insects and birds. The same adaptations that were important to the success of flowering plants long ago continue to be important today.

Flowers and Pollination
Flowers allow for more efficient pollination than occurs in most gymnosperms, which rely on wind for pollination. You have probably observed a bee or a butterfly hovering around the center of a flower. These insects and other animals feed on pollen, which is high in protein, or on nectar, a sugary solution produced in the flowers of some plant species. As an animal feeds from a flower, it gets pollen on itself. Then, when it moves to another flower for more food, some of the pollen brushes off onto the new flower. Thus, animal pollinators transfer pollen from flower to flower in a very targeted way. For this reason, flowering plants pollinated by animals don’t need to produce nearly as much pollen as do plants that rely on the wind to randomly transfer their pollen.
Flowers and fruits are unique adaptations of all flowering plants. Many flowering plants are pollinated by animals. Fruits protect the seeds of flowering plants and often play a role in seed dispersal.

Synthesize How is each photograph showing a coevolutionary relationship?

Fruits and Seed Dispersal

The many types of fruits include some very unlike the kinds you see in a grocery store. In biological terms, a fruit is a flower’s ripened ovary, which surrounds and protects the seed or seeds. For example, the shells of sunflower seeds and peanuts are fruits. Fruit play an important role in seed dispersal. As shown in **FIGURE 20.15**, the more familiar fleshy fruits are tasty food sources for animals, which digest the fruit tissue but not the seeds. Seeds pass through the animal, and are deposited along with a convenient supply of fecal fertilizer that is helpful during germination. Others take the form of burrs that cling to passing wildlife, or fibers that help spread seeds by wind. You will learn more about flowers, fruits, and seed dispersal in Chapter 22.

Infer Why is pollination by animals more efficient than wind pollination?

MAIN IDEA

Botanists classify flowering plants into two groups based on seed type.

There are at least 250,000 identified flowering plant species. Compared with other living plant phyla—the three gymnosperm phyla have a total of 720 species—the number of flowering plants is impressive.

Botanists classify flowering plants into two groups based on two basic kinds of seed: seeds with one or two cotyledons. A **cotyledon** (kaht-uhl-EED-uhn) is an embryonic leaf inside a seed. For this reason, cotyledons are often called “seed leaves.” As an embryo develops into a seedling, the seed leaf of some species remains inside the seed coat. In other species, cotyledons break out of the seed and turn green.
MONOCOTS ARE FLOWERING PLANTS WITH ONE COTYLEDON.

<table>
<thead>
<tr>
<th>One cotyledon</th>
<th>Parallel veins</th>
<th>Flower parts in multiples of three</th>
<th>Scattered vascular tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DICOTS ARE FLOWERING PLANTS WITH TWO COTYLEDNS.

<table>
<thead>
<tr>
<th>Two cotyledons</th>
<th>Netlike veins</th>
<th>Flower parts in multiples of four or five</th>
<th>Ringed vascular tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VOCABULARY

Mono- and *di-* are prefixes meaning “one” and “two.” *Cot* is a shortened form of the word *cotyledon*. Therefore, monocots have one cotyledon and dicots have two.

Monocots

Flowering plants whose embryos have one seed leaf are called monocotyle-dons, or *monocots* (MAHN-uh-kahts). As FIGURE 20.16 shows, monocot plants generally have parallel veins in long, narrow leaves, such as those of an iris or lily. Their flower parts usually occur in multiples of three, and bundles of vascular tissues are scattered throughout the stem. The cereal plants we depend on—corn, wheat, rice—are monocots, as are all other grasses, irises, and lilies.

Dicots

Dicotyledons, or *dicots* (DY-kahts), are flowering plants whose embryos have two seed leaves. In contrast to monocots, dicots have leaves with netlike veins. Flower parts in dicots usually occur in multiples of four or five, and bundles of vascular tissue are arranged in rings. Most deciduous trees, which lose their leaves in the fall, are dicots. Peanuts are also dicots. Each “half” of a peanut that has been removed from its shell is a cotyledon.

Predict

Would you expect that cotyledons are green inside a seed? Explain.

MAIN IDEA

Flowering plants are also categorized by stem type and lifespan.

Flowering plants can also be categorized by stem type and lifespan, as shown in FIGURE 20.17. These characteristics help describe mature flowering plants and are commonly used by botanists, gardeners, landscape designers, and horticulturists.
Herbaceous or Woody Stems
Some flowering plants develop woody stems, while others do not. **Wood** is a fibrous material made up of dead cells that are part of the vascular system of some plants. High concentrations of lignin and cellulose make the cell walls of these cells thick and stiff. Woody plants therefore have stiff stems and branches. Wood also accounts for the thickness of many woody plant stems. Trees, shrubs, and most vines have woody stems. Plants that do not produce wood, such as cucumbers, cacti, and marigolds, are called herbaceous plants.

Three Types of Lifespans
It is also helpful for gardeners to classify plants in terms of their lifespans, since lifespan determines which plants they need to replace each year.

- **Annual** Flowering plants that mature from seeds, produce flowers, and die all in one year are called annuals. Corn and lettuce are common annuals, as are some garden flowers such as zinnias.
- **Biennial** Flowering plants that take two years to complete their life cycle are called biennials. During the first year, a biennial produces a short stem, leaves that grow close to the ground, and underground food reserves. During the second year, these reserves are used to produce a taller stem, leaves, flowers, and seeds. Carrots are common biennial garden plants.
- **Perennial** Any flowering plant that lives for more than two years is a perennial. Most woody plants, including trees, are perennials. The stems and leaves of some herbaceous perennials, such as some grasses and dandelions, die at the end of the fall and grow back in the spring.

Contrast How do the lifespans of annuals, biennials, and perennials differ?

Connecting CONCEPTS

ONLINE QUIZ

To learn more about flowering plants, visit scilinks.org.

Keycode: MLB020

REVIEWING MAIN IDEAS

1. What adaptations give flowering plants a reproductive advantage over gymnosperms?
2. What are the primary differences between **monocots** and **dicots**?
3. Name three ways in which flowering plants can be categorized.

CRITICAL THINKING

4. **Contrast** In what ways does pollination in gymnosperms differ from pollination in angiosperms?
5. **Apply** How would you take plant lifespan type into account when planning a garden?

6. Mass Extinctions The fossil record reveals a mass extinction at the end of the Cretaceous period. Discuss why mass extinctions are commonly followed by a period of adaptive radiation, in this case, of flowering plants.
Measures of Central Tendency

One way to analyze data is to use measures of central tendency, which are measures that indicate the center of a data set. The three most common measures of central tendency are the mean, median, and mode. It is often helpful to look at all three of these measures because they may each point out different characteristics of a data set.

The **mean** is calculated by adding all of the data points together and dividing by the number of data points. The mean considers the full range of data, and is therefore affected by outliers—data points that vary greatly from all of the other points in the data set.

The **median** is the data point that falls in the middle when all of the data points are ordered from least to greatest. If there is an even number of data points, the median is the average of the two middle numbers. Since outliers do not affect the median, this may be a good measure to use with a data set that includes outliers.

The **mode** is the value that occurs most frequently. It is not affected by outliers. Some data sets have more than one mode. If there are several modes that dominate the data set, it is a good idea to study these data points more closely.

EXAMPLES

A class counted the number of seeds found in some common fruits. These data are shown in Table 1.

- **Oranges** The mean is an appropriate measure to use for this data set because there are no obvious outliers.
- **Watermelons** The mean is affected by an outlier, 582 seeds. The median is a good measure to represent this data set.
- **Apples** The two modes represent a trend in these results that the students may want to investigate further.
- **Strawberries**

TABLE 1. NUMBER OF SEEDS IN VARIOUS FRUIT

<table>
<thead>
<tr>
<th>Fruit</th>
<th>Number of Seeds per Fruit</th>
<th>Mean</th>
<th>Median</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oranges</td>
<td>14, 6, 10, 8, 4, 11, 6, 3, 5, 13</td>
<td>8</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Watermelons</td>
<td>582, 133, 207, 87, 164, 290, 98, 155, 196, 278</td>
<td>219</td>
<td>180</td>
<td>none</td>
</tr>
<tr>
<td>Apples</td>
<td>6, 7, 6, 4, 4, 3, 6, 4, 6</td>
<td>5</td>
<td>5</td>
<td>4 and 6</td>
</tr>
</tbody>
</table>

CHOOSE AN APPROPRIATE MEASURE OF CENTRAL TENDENCY

Use the data for the number of seeds counted in each of 10 strawberries to answer the questions below.

1. **Calculate** Find the mean, median, and mode for this set of data.
2. **Evaluate** Which measure of central tendency best represents this data set? Why?
Plants in Human Culture

KEY CONCEPTS Humans rely on plants in many ways.

MAIN IDEAS

- Agriculture provides stable food supplies for people in permanent settlements.
- Plant products are important economic resources.
- Plant compounds are essential to modern medicine.

VOCABULARY

- **botany**, p. 629
- **ethnobotany**, p. 629
- **pharmacology**, p. 631
- **alkaloid**, p. 631

Connect Books are made from plants. The pages are pulverized wood from trees, the ink contains plant oil, and the glue that binds them together is made from petroleum—the ancient leftovers of algae and plants. Humans rely on plants for nearly everything in daily life. Today, crop plants are so important to our economy that their changing prices are reported in the media alongside those of stocks and bonds.

MAIN IDEA

Agriculture provides stable food supplies for people in permanent settlements.

Some of the plants that are considered important by humans have changed over time, but plants have always been used to fill the basic needs of our species: food, shelter, clothing, and medicine. While botany is the study of plants, ethnobotany explores how people in different cultures use plants.

For most of human history, people survived by hunting and gathering. This requires a very thorough understanding of local botany—plant locations, life cycles, and characteristics. Hunting and gathering also requires people to change locations if resources are diminished by weather, disease, or overuse. People then must become familiar with the resources of the new area.

FIGURE 20.18 Agriculture has become an important part of our global economy. Many river deltas, such as the Sacramento River delta in California, are used for farmland because of their nutrient-rich soils and water.
Archaeological evidence suggests that people started intentionally planting for harvest about 10,000 years ago. Over the centuries, ancient farmers “tamed” wild species by a process of artificial selection, as shown in FIGURE 20.19. They chose plants with the best traits, saved their seeds, and planted them the next year. Most of the world’s staple foods—corn, rice, and wheat—were developed from wild grasses in this way. These farmers became more closely tied to particular areas.

Because farming requires people to stay in one place, agriculture gave rise to more socially complex centers of human populations. A benefit of farming was a more reliable source of food that could support a growing population. Eventually, farmers grew enough excess food to sell it to neighbors as a cash crop. In this way, farming became part of a culture’s economy.

Summarize What does an ethnobotanist study?

MAIN IDEA

Plant products are important economic resources.

Plant products have been traded among various regions for thousands of years. Spices such as pepper, cinnamon, and cloves were so valuable that they were commonly used as a form of currency during the early Middle Ages. In fact, many of the seafaring explorations to Asia and the Americas during the 1400s and 1500s were prompted by the value of spices, like those shown in FIGURE 20.20. Among these explorers, Columbus, Magellan, and DaGama were all in search of a new route to the valuable commodities of the East.

Today, plants are important economic resources on a global scale. The values of rice, corn, wheat, soybeans, coffee, sugar, cotton, and forest products traded in world markets every year are each billions of dollars. Paper, textiles, and lumber are just a few of the plant-derived products that are the basis of industries contributing to our economy.

Connect What plants were used to make the clothes that you are wearing and the contents of your backpack?
Plant compounds are essential to modern medicine.

The study of drugs and their effects on the body is called pharmacology. Many of the drugs used today are derived from plants, and much of the knowledge of these plants comes from traditional cultures. We still use some plants medicinally in the same way they have been used for thousands of years. For instance, the aloe vera gel you can buy to soothe sunburn was used for the same purpose by the Egyptians 3500 years ago.

As shown in Figure 20.21, scientists continue to look for and find new uses for plants that have been used medicinally for centuries. For example, Native Americans have long used the Pacific yew to treat a variety of conditions. In the 1960s, scientists isolated a compound called taxol from the tree, which has been used as a cancer treatment since 1993. Salicin, which comes from willow trees, is another plant compound that you are likely familiar with. It is the active ingredient in aspirin, the most widely used medicine in the world.

While plant oils and resins are common in traditional medicines, other plant compounds, including gums, steroids, and alkaloids, have found their way into modern medicines. Alkaloids are potent plant chemicals that contain nitrogen. In small amounts, many alkaloids are medicinal. By interfering with cell division, some alkaloids—such as taxol—have anti-cancer properties. Two alkaloids produced by the Madagascar periwinkle are used to treat childhood leukemia and Hodgkin’s disease. Other alkaloids have been identified to treat conditions ranging from a nasty cough to high blood pressure.

Today, much medical research focuses on the chemical properties of various plant compounds—especially compounds from plants that have been used medicinally in traditional cultures. Chemists also work to develop synthetic drugs based on the structure of these natural compounds, often changing the structures slightly to increase effectiveness and reduce side effects.

Infer Why might certain plant compounds have healing effects in small quantities but be dangerous in larger doses?
CHAPTER 20 OPTIONS FOR INQUIRY

Use these inquiry-based labs and online activities to deepen your understanding of plant diversity.

INVESTIGATION

Comparing Monocots and Dicots

Several characteristics can be used to distinguish between monocots and dicots. In this activity, you will use these characteristics to classify plants as either monocots or dicots.

SKILLS Observing, Classifying

PROBLEM Is the plant that you are observing a monocot or a dicot?

PROCEDURE

1. Select a plant to classify.
2. Draw a detailed illustration of the plant, including stem, leaves, and flower (if present). Save space to add labels and observations.
3. Examine the leaves of the plant. Draw a sketch of the vein pattern.
4. If the plant has a flower, record the number of petals on your drawing.
5. Using a razor tool, carefully cut off a very thin cross-section of the stem. Examine the cross-section of the stem under a dissecting microscope. Draw what you see next to the stem in your drawing. Record whether the vascular bundles are arranged in a simple ring or several rings, or if they are more scattered throughout the stem cross-section.
6. Record whether the plant has wood or bark.
7. Compare your observations with the characteristics listed in Table 1. Based on this information, classify the plant as a monocot or a dicot, and label it in your drawing.
8. Repeat steps 1–7 for each plant sample.

TABLE 1. CHARACTERISTICS OF MONOCOTS AND DICOTS

<table>
<thead>
<tr>
<th>Monocots</th>
<th>Dicots</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veins in leaves are parallel.</td>
<td>Veins in leaves are netlike.</td>
</tr>
<tr>
<td>Flower parts are usually in multiples of 3.</td>
<td>Flower parts are usually in multiples of 4 or 5.</td>
</tr>
<tr>
<td>Vascular bundles in stem are scattered.</td>
<td>Vascular bundles in stem form a ring.</td>
</tr>
<tr>
<td>Wood and bark are not common.</td>
<td>Wood and bark are common.</td>
</tr>
</tbody>
</table>

ANALYZE AND CONCLUDE

1. **Analyze** Which characteristics do you think were the easiest to use in classifying the plants as monocots or dicots?
2. **Analyze** List the plants that you were able to classify, and include whether you identified them as monocots or dicots.
3. **Apply** Why do you think that botanists rely on the number of cotyledons to classify flowering plants, rather than using a characteristic such as number of flower parts?

MATERIALS

- 2–4 plant samples
- razor tool
- dissecting microscope
Investigating Medicinal Plants
Rain forests have great biodiversity, and botanists frequently discover new plants in these ecosystems. One important area of research involves testing the chemical properties of these plants for medical purposes. You have learned that chemicals from the Madagascar periwinkle are used to treat childhood leukemia and Hodgkin’s disease. Chemicals from another plant, *Forsteronia refracta*, have been found to stop the growth of breast cancer cells. Each time a new plant is discovered, there is a possibility of finding a new treatment or cure.

SKILL Researching

PROBLEM What medicinal qualities can be found in rain forest plants?

RESEARCH
1. Find another example of a rain forest plant that is being used to produce pharmaceuticals.
2. Record the scientific and common names of the plant.
3. What disease or condition is this plant used to treat?
4. What chemical qualities of the plant make it an effective treatment?
5. Are there any problems associated with harvesting this plant?
6. Why do you think so many medicinal plants are discovered in the rain forests of the world, rather than in other biomes?

The Madagascar periwinkle contains two alkaloids, vinblastine and vincristine, which have been isolated and developed into anti-cancer drugs.
20.1 Origins of Plant Life
Plant life began in the water and became adapted to land. The common ancestor of plants is an ancient species of green algae. Green algae called charophyceans are the closest living relatives to this common ancestor. Over time, the first true plant species evolved as they adapted to life on land. Land plants have evolved mechanisms to retain moisture, transport resources, grow upright, and reproduce on land. They have also coevolved with other organisms that inhabit dry land.

20.2 Classification of Plants
Plants can be classified into nine phyla. Mosses and their relatives make up three phyla of seedless nonvascular plants. These plants rely on water for reproduction and must grow low to the ground to absorb water and nutrients. Club mosses and ferns make up two phyla of seedless vascular plants. Vascular tissue allows these plants to grow higher above the ground. Seed plants, which include three phyla of cone-bearing plants and one phylum of flowering plants, do not rely on water for reproduction. Sperm of seed plants are produced by pollen grains. Seeds nourish and protect the embryos of these plants.

20.3 Diversity of Flowering Plants
The largest phylum in the plant kingdom is the flowering plants. Flowers and fruit are two adaptations that have allowed flowering plants to become the dominant plant group on Earth today. Flowers often allow for more efficient pollination by animals, while fruit can aid in seed dispersal. Botanists classify flowering plants into two groups based on the number of cotyledons inside the seed. Flowering plants can also be categorized based on stem type and lifespan.

20.4 Plants in Human Culture
Humans rely on plants in many ways. Plants are essential to human existence. All of the food that we eat comes either directly or indirectly from plant life. Agriculture provides stable food supplies for most people today. Many agricultural products are important economic resources on a global scale. Plants also provide us with clothing, paper, textiles, lumber, and medicines.

Synthesize Your Notes
Three-Column Chart Use a three-column chart to take notes about the nine divisions of plants. Use the columns to write the scientific names of each division, the common names, and details about the plants.

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Details</th>
</tr>
</thead>
</table>

Concept Map Use a concept map to review how flowering plants can be classified.

flowering plants can be classified by

which can be

which can be

which can be
Chapter 20: Plant Diversity

Chapter Vocabulary

20.1 plant, p. 612
 cuticle, p. 614
 stomata, p. 614
 vascular system, p. 614
 lignin, p. 614
 pollen grain, p. 614
 seed, p. 614

20.2 pollination, p. 620
 gymnosperm, p. 621
 angiosperm, p. 621
 cone, p. 621
 flower, p. 622
 fruit, p. 622

20.3 cotyledon, p. 625
 monocot, p. 626
 dicot, p. 626
 wood, p. 627

20.4 botany, p. 629
 ethnobotany, p. 629
 pharmacology, p. 631
 alkaloid, p. 631

Reviewing Vocabulary

Vocabulary Connections

For each group of words below, write a sentence or two to clearly explain how the terms are connected. For example, for the terms cuticle and stomata, you could write “Together, the cuticle and stomata prevent water loss while allowing for gas exchange.”

1. lignin, wood
2. pollen grain, pollination
3. gymnosperm, seed, cone
4. angiosperm, seed, flower, fruit
5. cotyledon, monocot, dicot
6. pharmacology, alkaloid

Greek and Latin Word Origins

7. Cuticula is the Latin word for “skin.” How does this meaning relate to the definition of cuticle?
8. In Greek, the word stoma means “mouth.” How does this meaning relate to its botanical meaning?
9. In Latin, the word pollen means “dust” or “fine flour.” How does this meaning relate to its botanical meaning?
10. Conus is a Latin word that means “wedge” or “peak.” How does this meaning relate to the definition of cone?
11. Fruit is a Latin verb meaning “to enjoy.” How does this meaning relate to the role that various fruits play in human culture?
12. The prefix mono- means “one” in Latin, while the prefix di- means “two.” How do these meanings relate to the words monocot and dicot?

Reviewing MAIN IDEAS

13. Summarize the evidence supporting the statement that modern plants evolved from an ancient species of green algae.
14. Discuss four major challenges that early plants faced while adapting to life on dry land.
15. The 30-centimeter tongue of the hawk moth is long enough to reach the nectar—and reproductive organs—of the night-blooming orchid. What can be concluded about the evolution of plants from these types of relationships? Explain.
16. Describe the structural features that limit the height of mosses and their relatives.
17. Explain why most seedless vascular plants live in moist environments.
18. What is the main difference between the seeds of cone-bearing plants and the seeds of flowering plants?
19. Summarize two of the adaptations of flowering plants that allow them to flourish in today’s world.
20. Describe the system that botanists use to classify flowering plants into two main groups.
21. Compare and contrast annual, biennial, and perennial lifespans.
22. What role does agriculture play in the stability and survival of modern human populations?
23. How can plants play a role in developing modern medicines, even if they are not used as ingredients?
24. **Analyze** Aquatic plants, which evolved from land plants, have adaptations that allow them to live in the water. Some aquatic plants grow completely submerged in water. What challenges might these plants face that do not apply to plants that live entirely on land?

25. **Analyze** The sperm of seedless plants are flagellated, while those of seed plants are not. How do the sperm of seed plants reach eggs without flagella?

26. **Compare** When a plant reproduces, it is important for its offspring to disperse so that they do not compete directly with the parent plant. Compare the structures that allow seedless plants and seed plants to disperse to new locations.

27. **Synthesize** Some experts predict that the Amazon rain forest will be completely destroyed due to human activities within the next century. What resources would potentially be lost along with this ecosystem?

28. **Infer** Some types of flowers have special markings on their petals that act as guides to the pollen or nectar for their pollinators. How could such markings have evolved through natural selection?

29. **Analyze** What evolutionary advantage do the seeds of dandelions have over the seeds of pine trees?

30. **Synthesize** How might an increase in the use of insecticides affect flowering-plant populations in the area?

Interpreting Visuals

Use the illustration below to answer the next two questions.

31. **Analyze** What parts of this plant could you examine to determine whether it is a monocot or a dicot?

32. **Apply** Is this plant likely a monocot or a dicot? Explain your reasoning.

Analyzing Data

Valencia oranges, which likely originated in Spain or Portugal, are now the most widely planted orange variety in the world. Use the data below on the number of California Valencia oranges per tree to answer the next three questions.

<table>
<thead>
<tr>
<th>CALIFORNIA VALENCIA ORANGES PER TREE</th>
</tr>
</thead>
<tbody>
<tr>
<td>596, 402, 489, 708, 374, 548, 640, 585, 518, 450</td>
</tr>
</tbody>
</table>

Source: California Agricultural Statistics Service

33. **Calculate** What are the mean, median, and mode for this data set? Round the mean to the nearest whole number.

34. **Analyze** Does this data set contain outliers? Explain your answer.

35. **Evaluate** Which measure of central tendency best represents this data set? Explain your answer.

Connecting CONCEPTS

36. **Write About Seeds** From the viewpoint of a plant embryo, write about the importance of a seed. What does the seed provide for you? In what ways does it help you? What advantages do you have over nonseed plants?

37. **Synthesize** The flowering proteas of South Africa are adapted to a dry climate that receives as little as 600 mm of rain each year. However, plants must retain moisture in order for photosynthesis to occur. Describe the adaptations that allow these plants to retain moisture in their leaves while still allowing for air to move in and out.
1. In the 1940s, Barbara McClintock observed patterns of inheritance in corn plants that could not be explained by the current gene theory. The conclusions of her work were not widely accepted for many years until further supported by the work of other scientists. What does this scenario demonstrate about science?
 A. Data that are more than 50 years old should be discarded.
 B. Data that do not fit a scientific theory should be discarded.
 C. Theories may be modified as additional data lead to new conclusions.
 D. The repetition of results by many scientists is not necessary to validate a theory.

2. Many wind-pollinated flowers are small and green, with male reproductive structures that hang outside the flower where wind can easily pick up and carry the pollen. Which is likely to also be true for wind-pollinated flowers?
 A. Colorful petals would not be an advantage.
 B. Sweet-smelling petals would be an advantage.
 C. They produce less pollen than other flowers.
 D. They can thrive in any environment.

3. **Tomato Plant Growth Per Week (cm)**

<table>
<thead>
<tr>
<th>Plot</th>
<th>Condition</th>
<th>Average Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>full sun</td>
<td>9 cm</td>
</tr>
<tr>
<td>2</td>
<td>part sun</td>
<td>7 cm</td>
</tr>
<tr>
<td>3</td>
<td>full shade</td>
<td>2 cm</td>
</tr>
</tbody>
</table>

 Gardeners are testing three plots of land with similar soil to find out which is best for growing tomato plants. Which of the following conclusions is best supported by their data?
 A. Plot 1 received the most nutrients.
 B. Plot 3 did not receive enough water.
 C. Tomato plants grow best in full sun.
 D. Tomato plants cannot grow in the shade.

4. The sugar in corn is rapidly converted to starch after the corn has been picked. After picking, corn with the Sh2 gene was found to have more sugar and less starch than corn without this gene. Which of the following statements is most likely to be true about corn with this gene?
 A. It cannot convert sugar to starch.
 B. It cannot photosynthesize.
 C. It has no chloroplasts.
 D. It has no chlorophyll.

 THINK THROUGH THE QUESTION
 Think about the process by which plants produce sugars. You can eliminate any answer choices that would result in plants with less sugar.

5. The beak shape shown here likely evolved through a process in which birds that could get food most efficiently
 A. died in the absence of long, tubular flowers.
 B. did not have time to find mates.
 C. shared food with other individuals.
 D. were more likely to survive and reproduce.

6. Rock from the Cretaceous period contains the fossils of a wide variety of dinosaurs and seedless plants. The fossil record after the end of this period includes the fossils of many flowering plants and smaller animals, but no dinosaurs. Which of the following statements is supported by this evidence?
 A. Dinosaurs had begun to die out during the Cretaceous.
 B. A mass extinction at the end of the Cretaceous made new niches available for flowering plants.
 C. The Cretaceous environment was less favorable to seedless plants than to flowering plants.
 D. Dinosaurs evolved around the end of the Cretaceous.